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ABSTRACT

The basic Michelson interferometer, as used for Fourier transform spectroscopy, is analyzed in this
report. The principles of operation are explained, and its inherent limitations are shown. An original
analysis of apodization, for the case of an off-axis detector field-of-view, is included in an appendix.
Practical limitations of real instruments are also analyzed. These include misalignment, wavefront error,
and noise sources. In another appendix, the use of retroreflectors in the interferometer is analyzed, and
the effect of lateral displacement of a retroreflector is compared to that of mirror tilt in a plane-mirror
interferometer. Special attention is given to sources of noise in the Fourier transform spectroradiometer,
and expressions are derived for noise-equivalent radiance from these sources. The performance of a
Fourier transform spectrometer is compared with that of a filter-wheel spectrometer having the same
optical aperture and spectral resolution. The mathematical treatments in this report are sufficiently de-
tailed that they should be easy to follow, once the optical principles are grasped. Some numerical
calculations are included, based on the specifications of the proposed GOES High-Resolution Interferom-
eter Sounder (GHIS).
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1. INTRODUCTION

Weather satellites use infrared spectrometers to measure the temperature and humidity at various
levels in the atmosphere, in a process known as atmospheric sounding. The sounder instrument of the
newest Geostationary Operational Environmental Satellite, GOES-8, uses a filter wheel for this purpose.
Lincoln Laboratory has undertaken a study of the feasibility of replacing the filter wheel on future GOES
spacecraft with a Fourier Transform Spectrometer (FTS) [1],[2]. This report presents the theory of Fourier
Transform Interferometry (FTI), as it relates to the proposed GOES High-Resolution Interferometer
Sounder (GHIS). After a brief introduction, the basic theory is followed with a discussion of the perfor-
mance limitations of the technique. Finally, the performance of the FTS is compared with that of a filter
wheel system, using the same detectors and input optics.

Optical spectra were first measured with the use of an interferometer by Michelson in the nine-
teenth century. The utility of the technique was limited at the time, first by the lack of sufficiently
quantitative detectors, and second by the difficulty of performing the necessary Fourier transforms. With
the advent of electro-optical detectors, and especially digital computers, those barriers were removed by
1960. Fourier Transform Spectroscopy has since become a standard tool in the analytical laboratory. The
Cooley-Tukey Fast Fourier Transform (FFT) algorithm (1965), and the exponential improvement in the
cost/performance ratio of computer systems, have accelerated the trend.

Many Fourier Transform Spectrometer (FTS) instruments have been flown successfully in space,
beginning in 1962. For a full review of those instruments, see the report by Mooney, et al. [3]. For a
history of Fourier Transform Spectroscopy, and a detailed treatment of its principles, see Introductory
Fourier Transform Spectroscopy by R. J. Bell [4]. The basic theory, and instrumental limitations, are also
discussed by Brault [5].



2. PRINCIPLE OF OPERATION

The simplest type of FTS is based on a Michelson interferometer, as sketched in Figure 1. The
incoming beam of collimated radiation is divided in two by the beamsplitter. The beam in each leg of
the interferometer is reflected back toward the beamsplitter by a mirror. At the beamsplitter, each beam
is again divided, one part going to the detector, the other returning to the input source. In each direction,
the beams from the two legs recombine, or interfere. If the interferometer mirrors are correctly aligned,
so that the wavefronts of the interfering beams are parallel, then the intensity of the light focused by the
lens on the detector is modulated according to the optical phase difference of the beams from the two
interferometer legs. The optical phase difference, 0, is given by 27rAx//I, where A is the wavelength of
the light, and Ax is the optical path difference, or OPD. If yl and Y2 are the optical distances of the two
interferometer mirrors from the beamsplitter, the OPD Ax equals 2 (y2 - yd)

iREFERENCE MIRROR

BEAMSPLI7TER

INPUT BEAM

MOVING MIRROR

FOCUSING
OPTICS

Figure 1. Optical diagram of a basic Michelson interferometer.

In operation, one or both of the interferometer mirrors are moved (while maintaining alignment)
so Ax is varied. The intensity recorded at the detector, for a monochromatic source, is then given by

1(v, x) 1 Io[l+cos(27rvAx)]. ()
2
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where

v = 1//, the wavenumber (usually measured in cm-1),

0 = the intensity at zero path difference (ZPD), i.e., Ax = 0.

At the same time, the beams leaving by the input side of the interferometer interfere, with an
intensity given by

i (VX) IO[l -cos(2rvAx)] (2)
2

Equation (2) is given here merely to show that energy is indeed conserved; the total power leaving the
interferometer is constant, even though that at the detector is modulated. More complex instruments
capture both outgoing beams, and subtract one interference signal from the other. However, such "bal-
anced" designs are not considered in this report, since they require a second detector for each signal.

In the foregoing, it was assumed that both the reflectance, R, and transmission, T, of the beamsplitter
were exactly one half. More generally, we find

1 lO( ox i/s[ 1+cos(27rvx)] (3)Id(v,x) = 21 [/3

where

, = 4RT = the beamsplitter efficiency. (N. b.: 0 < s _< 1. q, = 1 if R = T = 0.5),
= the transmission of the remainder of the optical system, excluding the beamsplitter.

In the present application, the input is a spectral radiance, By, composed of many wavenumbers,
v, the total signal from the detector, s(x), becomes

s(x) = 2 S, [1+ cos(2vx)]dv , (4)

where we have defined a spectral signal, S, as

Sv = 1 Aof2Cox,?s9 ,B v ,(5)

4

and

Ao = the area of the optical aperture,

2= the solid angle of accepted radiation, and

a= the responsivity of the detector (in, e.g., Volts/Watt).

[N. b.: The product A092, often called the throughput, or 6tendue, of the system, is an optical
invariant. It is unchanged, from the input aperture to the detectors, as long as the optics are properly
designed to avoid vignetting.]
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The detector signal, equation (4), is composed of an unmodulated, or "DC" part, and a modulated,
or "AC" part, of average value zero. The value of the unmodulated component is just equal to one half
the signal at ZPD. The modulated component is called the interferogram. If we let the spectral signal be

defined symmetrically for both positive and negative wavenumbers (i.e., Sv(-v) = Sv(v)), then the inter-
ferogram can be expressed* as

m(x) = Sv[cos(21rvx) + i sin(2;rvx)]dv ,or (6)

m(x) = T Sve i2nvxdv . (7)

We see from equation (7) that m(x) and S v form a Fourier transform pair. Hence, the spectral signal
could be recovered from the interferogram as

Sv  m(x)e-iXdx . (8)

Full knowledge of the other factors in equation (5), many of which depend on wavenumber, then
allows us to determine the spectral radiance, Bv. The very important subject of radiometric calibration,
however, is beyond the scope of the present report.

*The imaginary term in the integral is antisymmetric; hence it vanishes.

5



3. INHERENT LIMITATIONS

The preceding section presented the basic theory of the interferometer. Next, we describe sonic
inherent limitations of the Michelson interferometer as a spectroscopic instrument.

3.1 RESOLUTION

The interferogram, m(x), is what is directly measured by recording the detector output as a function
of OPD. However, it obviously can not be determined for x from -- to o! Instead, there is some
maximum OPD, L. In this case, x is contained in [-L, L], since we use a two-sided interferogram. We
obtain an approximation to the spectral signal as

S f = n(x)e - x . (9)

This is equivalent to

;, (JnXl-) eiixdxe, (10)

where nI is the symmetric, unit rectangular window function. Since S', is the transform of a product of
two functions, then it is equal to the convolution of their (inverse) transforms. We have

S, = 2Lsinc(2Lv)*S, (the symbol * stands for convolution), (11)

since the Fourier transform of -I(x/2L) is given by

=sin(21rLv) (2
F[II _x 2Lsinc(2 Lv) =(2

From equations (11) and (12), we find that the effect of the finite interferometer mirror stroke is
to limit the spectral resolution of the computed spectrum. The true spectrum is convolved with an
instrument resolution function, sinc(2Lv), which has its first zero at

3v = L. (13)
2L

By convention, 5v is called the unapodized spectral resolution of the interferometer.

3.2 APODIZATION

So far, the incoming radiation has been treated as having a negligible angular divergence within
the interferometer (i.e., 0 = 0). All rays were assumed to be parallel to the interferometer optical axis,
defined as the normal to the mirrors. For rays at an angle a to the axis, the interferometer operates in
the same way, except that the OPD is no longer x, but rather xcosa. Returning to equation (4), the detector
signal is now given by

7



s(x)=2 S,, ffil+cos(2rv.xcos.z)sin ,dad dv (1 4a)
0

or

s(x) = 2 0S,,[I + G(O),po)]dv C 14b)

where

0= the azimuthal angle about the interferometer optical axis, and

0- = the region of integration representing the acceptance field-of-view, of solid angle Q.

and we have defined the geometrical, or monochromatic signal, factor in equations (14) as

G(aopo) = cos(2Tcvx cosa~sinadad(ff%,o =-(15)

The integrand in equations (14) represents an image in the field of view consisting of concentric
circular fringes. They have an appearance similar to "Newton's rings," seen when a spherical optical
surface is in close proximity to a planar one. The rings move in or out as x varies. Figure 2 shows a series
of snapshots of the fringes, as vx ranges from 1000 to 1001 waves.

Assuming that the acceptance field-of-view is circular, as usual, but that it may be displaced from
the interferometer optical axis, by an angle c0, we can simplify the limits of integration by changing the
angular variables to p. fi, as defined in Figure 3.

Equation (15) may be written as

G(aO, po) =- f '  o cos(2rvx cos a) sin pdpdO3, (16)

and the solid angle of acceptance (included in the definition of S) is given by

0= f"r f'sin pdpd=2 -cospo)-- = 0 (17)

In case oa0 = 0, we have a =p, and equation (16) becomes

G(O, po) 2;Jro cos(2m'x cos p) sin pdp (18)

Making the substitution y = cosp, this becomes

G(Opo)= 2.' cos(2,,,.y,. , (19)f2 fcos Po "

from which

G(0, P) = 1 [sin(2m x) - sin(27rnx cos Po )• (20)

vx.8



increasing

phase

Figure 2. Fringe pattern evolution in the system focal plane, as the on-axis fringe phase varies through one cycle.
The FOV shown is 30x30 mrad. The wavenumber is 2700 cm-1, and the interferometer delay starts at 1000 waves
on the axis.

Using equation (17), and the identity

sin A -sinB = 2 sin(A-B)os(A+BJ (21)

we arrve at

phfringe2 sin Cos r 12

vx.9 2 ) ( A 4B

9



a

OPTICL
AXIS RADIUS p0_o --

~a0

Figure 3. Geometry of detector acceptance field-of-view in the system focal plane. Each vector represents an angle
in interferometer space.

If we use the definition of the sinc function,

sin m
sine x = s , (23)

equation (22) becomes

G(O, Po) =since V2Cos 21rvx I. (24)

Thus, for the on-axis field stop, equation (14) becomes

s(x) = 2 f Sv [I + sinc VX2 cs27rvIx[1- j'2]dv".2 (25)

Comparison of equation (25) with equation (4) reveals the consequences of having a non-zero field-of-
view, S2. One effect is to shift the apparent wavenumber (or conversely, the apparent OPD), by a factor
close to unity. The other effect is to modulate the fringe amplitude (or contrast) with a sinc function. The
argument of the sinc function contains both the wavenumber and the OPD. The reduction of the fringe
amplitude as lxI increases is often referred to as self-apodization.

The exact solution of the integration problem in the more general case, that a0 # 0, may be found
in Appendix A, in terms of Lommel functions. Again, as a result of the non-zero aperture diameter, the
interferogram is modulated by an overall factor, M, which reduces the fringe contrast as the OPD
increases:

G(ap)=M(aopo) cos[27rvxcosa 1- 41P (A-34)

10



M is well approximated, for at least 1,000 waves of OPD, by

M(ao,Po) 1s2 a0 + S- (A-35b)

In addition to the fringe visibility reduction, the apparent wavenumber is altered, by a factor which
depends on both the aperture size and its offset angle:

v'--vcosao1--S) (A-36)

By expanding the sinc function as a power series, the reader may easily verify that equation (A-34)
reduces to the same solution as in equation (24), when a0 goes to 0.

3.3 THROUGHPUT

The preceding section revealed that there is a trade-off to be made between optical throughput,
A0£2, and spectral resolution, 8v. This comes about because of the solid angle factor in the apodization
function in either equation (24) or equation (34). The modulation in the interferogram approaches zero
as the product vxf2 approaches 2nr. The maximum absolute value of x is L, which gives the spectral
resolution (see equation (13)). Writing the sinc function in terms of spectral resolving power, Pr,

V

Pr =_Pr&

we have

sinc( -O 2 = sinc( 47 (26)

Assuming that the application calls for a certain resolving power at a certain wavelength, one
normally wishes to use the maximum solid angle to get the best signal-to-noise ratio. Since the interfero-
gram signal (see equations (4) through (7)) also includes the solid angle factor, we wish to maximize the
product

S2sinc(sr= 4- sin( ) (27)47 r Pr 4 )(7

Staying within the central lobe of the sinc function, the maximum signal is obtained for

2;r
DMAX = (28)

Thus, there is an inverse relationship between the optical throughput, which is proportional to solid angle,
and resolving power.

11



4. PRACTICAL LIMITATIONS

The preceding discussion concerned the theoretical capabilities of the Michelson interferometer.
Next, we turn to the performance limitations of practical hardware, caused by the effects of optical
misalignment, fabrication tolerances, and noise.

4.1 MISALIGNMENT

So far, we have implicitly assumed that the interferometer is perfectly aligned, that is to say, each
mirror is exactly parallel to the image of the other mirror, formed by the beamsplitter. Suppose now that
one mirror is misaligned by a small angle, E. The optical path difference is now a function of the position
of the rays within the aperture. Let the polar coordinates (r, 0) denote the position of the rays in the plane
of the Lyot stop,* or aperture of the system. For these rays, the optical path difference, x, in our original
expressions is replaced by

x'=x+2ErsinO (29)

The total signal, given by equation (4), now becomes

s(x) =2f, S,[l±+H (v,x)]dv , (30)

where
1 7r R

He(v, x)"=-12J f cos[27rv(x + 2Frsin0)]rdrd0, and (31)

R = the radius of the Lyot stop.

To evaluate He, we first expand the cosine:
1

HE (V, X) 1 2[P1 - P21 ],(32)

where

r R
P1 = cos(27rvx) J cos(4rversino)rdrdo , and (33)

f~iri Ro

P2 = sin(2rvx)J7r R sin(4rversin0)rdrd = 0 (34)

Making use of the fact that [7]

focos(xsin0)d=7rJ0(x) , and fxnJnl(x)dx = xnJn(x)

*The Lyot stop is a defining aperture employed to minimize stray light reaching the detector. It was

introduced in a solar coronagraph developed by B. Lyot in 1931. (See R. Klingslake, Optical System
Design (1983), pp. 228-229 [6].) In an FTS, it is frequently located at the output of the interferometer.

13



leads to

2R
H,(v, x) = cos(2m'lx) Jo(4rvEr)rdr (35)

from which follows

HE (v, x) = ?J 1(k)cos(2irvx) (36)

k

where

k - 4rvER , (37)

We thus find that the interferogram is multiplied by a function of exactly the form found for
diffraction from a circular aperture. For k = 0, its value is exactly 1. The first zero occurs for k = 3.83.
For k << 1, we can use a power series expansion, retaining only the first two terms:

_(2 =1 l(k)2+l1(k )4 ... _(7rvrR)2 (8
-J1(k)=l_ 1 - - -. =127v ) . (38)k~ l k  2,2) 12 .2)

The condition k << 1 amounts to

AE<< -- , (39)
4irR

which implies that the linear displacement of the mirror must vary by << A27r across its diameter.
Otherwise, the fringe contrast will be significantly reduced.

In view of the sensitivity of the Michelson interferometer to tilt misalignment of the flat mirrors,
one might use corner-cube retroreflector mirrors. However, retroreflectors also have a sensitivity. In their
case, it is to translational alignment, as explained in Appendix C.

4.2 WAVEFRONT ERRORS

Michelson interferometers are quite sensitive to anything which causes a difference in the wavefronts
of the two beams when they are recombined. This has just been shown for the case of misalignment. We
now consider the effects of wavefront distortions, or optical path difference (OPD), caused by departures
from flatness in the beamsplitter and interferometer mirror surfaces. In this treatment, the nominal OPD,
x, caused by displacement of the moving mirror, will be referred to as the optical delay. The OPD from
component distortions will be called wavefront error. This wavefront error is actually the difference
between the wavefronts from the two interferometer arms, after recombination at the beamsplitter, and
after removing the overall optical delay.

The analysis of wavefront errors begins almost exactly like that of misalignment (indeed, misalign-
ment can be viewed as a special case of wavefront error):

14



s(x)= 2J0S,[l + H5(v,x)]dv , (40)

where

H(v,x) n- I?2 
* cos[2rv(x + 6(r,O))]rdrdO (41)

R = the radius of the Lyot stop,

x = optical delay, between best-fit, flat wavefronts from the two arms, and

8(r,o) = wavefront error at radius r, azimuth 0, in the Lyot stop.

Evaluation of the integral over the Lyot stop begins as in the case of tilt misalignment, starting with
an expansion of the cosine:

1

H3 (v,x) = 2 [P- P2] , (42)
7rR

where

P1 = cos(27rvx)_r O cos(27rv6(r,O))rdrdO ,and (43a)

P2 = sin(27rvx)f JOsin(27rv8(rO))rdrdO (43b)

The quantity vS(r,o) is the wavefront error, expressed in wavelengths, at wavenumber v. We know
that this should be much less than one wave, in order to obtain an effective interferogram, so we use
power series expansions of the cosine and sine:

cos(21rv3(r, 0)) =1-1 (27rv,5(r, 0))2 +.-. , and (44a)

sin(27rv3(r, 0)) = 2nv3(r, ) - 1(27rv,5(r, ))3 +... (44b)

We choose to define 3 such that its mean value over the aperture is zero:

j ' 3O(r, )rdrdo - 0 (45)

Also, we make the approximation that the third and higher powers of v8 average to zero over the Lyot
stop. Making the substitutions in (43a), we have

P1 = cos(2rvx) 7rR2 - 21r f ( rdrdj or (46)

15



P, = n??2 cos(21vx)[1 - 2;r 2 v 2(,52)] '(47)

where

(52)= the mean-squared value of the wavefront error.

Thus we find

H8(v,x)=cos(21rvx)[1-21r2 V2(32)] (48)

Once again, the interferogram contrast is now reduced by a modulation factor, given by

M3 =1-2 2 v2 K32 ) (49)

or more simply, the fringe contrast is reduced from its ideal value of one by

-AM = 27r2 v2 (3 2 ) , (50)

The total wavefront error over the aperture is related to errors introduced by the various compo-
nents (see Appendix B) as

8(r,o))=2[SMs -SMC + ST -3CT+2S3cosO] , (B-4)

where

SMS(r, 4) the surface irregularity of the mirror in the splitter arm,

SMC(r, 4) = the surface irregularity of the mirror in the compensator arm,

S3(r, 4) = the surface irregularity of the beam-splitting surface,

6sn(r, 4) = the transmitted wavefront error of the beamsplitter,
3c7(r, 0) = the transmitted wavefront error of the compensator, and

0 = the angle of incidence at the beamsplitter.

Appendix B gives further expressions which will be useful for estimating the loss of fringe contrast
caused by specified tolerances on the surface irregularities and transmitted wavefront errors of the various
optical components. Here, it is worthwhile to make two observations: First, irregularities of the splitting
surface (S3) cause roughly twice as much error as those on either mirror, because a negative deviation
in one arm of the interferometer is subtracted from a positive deviation in the other. Second, identical
irregularities on the two mirrors, or identical errors on the two transmissive parts, will cancel out.
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4.3 SPLITTER-COMPENSATOR DIFFERENCES

A compensator plate was alluded to in the preceding subsection, but its function has not yet been

explained. It is needed to balance the optical path length introduced by the plate (or substrate) on which

the beam-splitting surface is formed. If the index of refraction of the splitter substrate were constant, no

compensation would be needed, as the shift of one mirror would have the same effect. However, the

phenomenon of dispersion in the substrate requires the addition of a compensator of exactly the same

composition and thickness as the splitter substrate.

There must be some tolerance on the thicknesses of the beamsplitter and compensator plates, as

actually fabricated. When a plate of thickness t is introduced into a beam at angle of incidence 0, the
optical path is increased by

A= tncosO'-cosO] =t[ n2 -sin 2 0 _cos] (51)

The difference in optical paths, between the compensator and splitter plates, when their thicknesses differ

by At, is

S=At[ n2sin20cos0] (52)

The change in this OPD, between wavenumbers 21 and )u2, where the indices of refraction are nI and n2 ,

respectively, is

3A= At[n 2 -sin 2 0- V n 2 sin20] (53)

This may be written as

,6;L = At n2 -sin2 0 -+-1], (54)

where we define

2 n2 2

Assuming that An << n, the bracketed quantity in (54) may be expanded as a binomial series to yield the

approximation

AtAn 2 2

2 sin2 0

The beamsplitter and compensator for GHIS are to be made of KBr. The dispersion equation for

the index of refraction of KBr at 22C is (see [8], pp. 7-70*)

*Typographical errors in the formula as printed in the handbook are corrected in this report.
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7.7 03 1.66 02
n2 = 2.361323-3.11497 x10

-4 A - 5.861x10 e+ 7.6 7 6x13 1.56569 x 10

A A2 - 0.0324

where the wavelength is given in pm. In the wavelength range of GHIS (3.7 - 15 pm), we find that

With 0 = 30° and A1 = 15 pm, we have

0.0245 1 - 2 At

The effect of the dispersive offset of the optical paths in the two interferometer arms is to introduce
an asymmetry in the interferogram. The zero path difference position is truly zero only at one wavenumber;
at other wavenumbers, it is shifted. When the Fourier transform is performed to obtain the raw spectrum
(see equation (9)), an asymmetry will cause the appearance of an imaginary component in S'. The raw
spectrum will contain a complex phase factor, of phase 2nvb,. The calibration process, carried out in
either the interferogram or complex Fourier transform domains, should correct for this shift. However,
as a guideline for system design, it is suggested that this phase angle be held to less than 27,; in order
to prevent ambiguities in recovery of the phase.

4.4 NOISE SOURCES

The interferogram measurements from a real instrument will be affected by noise from many
potential sources. First, we shall examine the relationship between the noise in the real interferogram and
the resulting apparent noise in the computed spectrum. Then, the important sources of noise will be
considered in turn.

4.4.1 Conversion from Interferogram to Spectral Domain

In practice, the interferogram is measured as a series of discrete samples, taken at N different
points. As before, we assume a two-sided interferogram, so that -L < x < L, and the spacing between
samples is thus

=2L2L 
(56)

N

A Discrete Fourier Transform is performed on the interferogram, fix), which gives a computed
spectrum, F(v), also having N points. The spectrum F(v) is periodic, with period 2vn. The following
relations hold [5],[9]:

N = 2L = 2vn = 2L.2vn  (57)
& 31
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We shall make use of the Rayleigh Power Theorem, which in discrete form is stated as

N-1 N-1

X f(xm) f *(Xm)= v F(vj)F*(vj) (58)

m=0 j=0

The theorem may also be restated as

2LKIf 12 =2vnKJFI2) '(59)

where the brackets denote the mean value over the whole period of the function.

In particular, suppose that in place of fix), we put a real measurement noise, ('x, in the interferogram
domain. We then have a direct relationship for the resulting noise in the spectral domain, a-v:

a x / 2- f= a v 2-v . (60)

From the relations (57) above, we find

2L
'v=' Kfx 7 (61)

At this point, we make use of the fact that because the spectrum of incident light must be real, its
true interferogram is symmetric. There is no such constraint on most sources of noise. Generally, the noise
power in the interferogram will be evenly divided between symmetric and antisymmetric parts, which
correspond to real and imaginary noise components, respectively, in the computed spectrum. The imagi-
nary half of the noise power can be disregarded, so that the rms (root-mean-square) noise in the spectrum
is divided by /2:

av IREAL = L- a x (62)
N

4.4.2 Noise-Equivalent Spectral Radiance

We specify the spectroradiometric performance of the instrument in terms of a noise-equivalent
spectral radiance, denoted by NENv. This is just a radiance which would produce an output signal
equivalent to the output noise, at each apparent wavenumber. If a, is the system spectral noise, then the
noise-equivalent spectral radiance is given by

NENv = - Bv  (63)
SV

Substituting equation (5) for the signal, we have

NENv = (64)
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The system NENV is composed of contributions from various sources. Some of them are multipli-
cative, i.e., proportional to the input radiance. Most, however, are additive noise effects in the interfero-
gram. Multiplicative noise sources, which include interferometer tilt jitter noise and velocity error noise,
are evaluated as noise-to-signal ratios. The total of additive errors in the interferogram can be treated as
the sum of the noise powers from the various individual sources:

Ux = X .~i , {i} = sources of noise. (65)
i

Each term in the summation corresponds to a noise-equivalent spectral radiance contributed by that
source:

NEV2 N E NVi . (66)
i

We evaluate each noise contribution in terms of NENv in order to have a common basis for
comparison of the different sources with each other, and of the system NEN, with the required perfor-
mance specification.

Upon expressing the spectral noise (equation (64)) in terms of the real noise in the interferogram
(equation (62)), we find

NENv= 4LA F (67)
A0S2z 0~x77j9z N

4.4.3 Photon and Detector Noise

A very important class of additive noise appears at the output of the detector. It is made up of
photon noise and detector noise. The photon noise (also called quantum noise) generally has a uniform,
or "white" temporal spectrum, and it results from the inevitable statistical fluctuations in the number of
photons converted to photoelectrons. (We assume that photon detectors are used here.) The detector noise
can have several components. In semiconductor infrared detectors, charge carriers are generated by
thermal excitation across the band gap. In photoconductive detectors, this is referred to as "thermal
generation-recombination" noise, or "thermal G-R" noise. Photovoltaic detectors have a steady "dark
current," which causes noise through its statistical fluctuations.

Both photon noise and intrinsic detector noise are usually lumped together and treated as the total
"detector noise," which we shall designate ax,det . When divided by the detector responsivity, it gives the
detector's noise-equivalent power:

NEPdet = cx,det68)

The usual figure-of-merit for specifying detectors is the specific detectivity, or D*. It is the recip-
rocal of the NEP, but normalized to unit detector area and temporal bandwidth:
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D*= A (69)

NEPdet

where

Ad = the detector area, and

Af = the electronic bandwidth.

(Notice that the conditions of the photon flux incident on the detector must be specified, along with D*.
In the present work, we calculate D* based on the photon irradiance expected in use, and not on the more
typical 295 K blackbody radiance over the full hemisphere.)

The effective noise bandwidth, Af, in this sampled-data system is equal to the Nyquist frequency,
which is one-half the sampling frequency:

1 N
Af = f y fsamp = (70)

where

T = the duration of the interferometer scan, of N samples.

Returning to the expression for NEN in terms of interferogram noise (equation (67)), and using the
foregoing definitions, we find a useful expression for the detector NENv:

4L d*_
NENv, Ao2oxlsD T (71)

Using the definition of the unapodized spectral resolution, &, this may also be written

2 AdNENvde ad
NdtA xls3VD* T (72)

4.4.4 Electronics Noise

The electronics following the detector also contributes noise. It mainly originates in the input stages
of the preamplifier. It may be characterized by a noise power spectral density, namp, which is referred to

the input of the preamplifier, i.e., the output terminal of the detector. It contributes an rms noise to the

interferogram given by

- N
CTx,amp = namp - amp ' (73)

The NENv component contributed by electronics noise is thus
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NENvamp - 4Lamp T (74)

A00 rox1WR V

4.4.5 Aliased Noise

When the discrete Fourier transform of a sampled signal is performed, only frequency components
below the Nyquist limit are faithfully preserved. Any signal component beyond the Nyquist frequency
appears in the spectrum at its alias frequency, given by

falias = fsamp - f = 2 fNy - f (assuming that fNy < f < 2 fNy). (75)

The raw signal must be filtered to eliminate components above the Nyquist frequency before
sampling. Once they are sampled, such aliased components are inseparable from the true signal. Such
filtering is done first in the optical domain, by passband filters and/or dichroic beamsplitters. Next, there
is the spectral response characteristic of the detector. Finally, the electrical output of the detector is
filtered. In the interferometer, the temporal frequency is directly related to the wavenumber by

dxf = v- = vVopD , (76)
dt

where

VopD = the optical path difference velocity.

Heretofore, the electronic filter was assumed to have no effect on the signals being measured. In
other words, its magnitude, M(l), was taken as 1 exactly. To be correct, we must substitute M(f1)J
wherever a, appears in the equations above.

Aliasing will produce a noise component corresponding to the combined detector and electronic
rms noise amplitude times the electronic filter magnitude at the image frequency:

NENv,alias = Mfimage) NENv,det + NENv,amp , or (77)

4LM(fimage) 1 FAd +( namp)2
NENvajas AO.Q2Tx77,M(vVVpD) T I +*2 a (78)

where

fimage = 2 fNy - vVoPD (79)

4.4.6 Low-Frequency ("llf') Noise

Semiconductor devices, including photoconductive IR detectors in particular, generally exhibit
excess low-frequency noise. It is often called "I/f" noise, because its power spectral density has the form

Cl= Kf -  ,(80)

22



where a is a constant on the order of unity.

In device specifications, the magnitude of the 1/f noise is usually given in terms of the "white"
noise, n0 , at higher frequencies, by specifying the "knee frequency," fknee' at which the two components
are equal. The total noise power takes the form

n =no f (81)

The llf component of noise from the detector and amplifier can thus be included in the D* and
NEN expressions. Notice that the frequency dependence of these noise components now implies a
wavenumber dependence in NEN (see equation (76)).

We saw earlier that electronic filtering is needed to attenuate high-frequency noise, so that it would
not appear on the signal through aliasing. A high-pass filtering should be used as well, to attenuate the
l/f noise, at frequencies below the low-wavenumber end of the signal spectrum.

4.4.7 Quantization Noise

The analog-to-digital converter (ADC) introduces an rms error in the digitized signal, which is
given by

2.m(0)
ax,ADC = 2bff ' (82)

where

m(O) = the maximum anticipated interferogram signal, at the ZPD peak, and

beff = bnom - 1.5 = the effective number of bits, accounting for ADC nonlinearity errors.

Referring to equations (5) and (7), we can write

m(O) = - A092 7 . (83)
4 Jo

The rms ADC error is thus

( 0x,ADC 2 &' (22x?1sb vM(1VoPD)BV) ' (84)

where we have defined

~(vVOPD)Bv) 2 foJ xO?1ZvM(V

xOskm(o v-- N o OD)2vdv (85)
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When UxADC is substituted in the general NEN expression (equation (67)), we find

1 (KOXsRVM(VVOPD)Bv) N
NENv,ADC = 2 beff .ox11sCvM(VoPD) (86)

4.4.8 Mirror Velocity Errors

Ideally, the interferometer signal is sampled at uniform increments of optical path difference, Ax.
To this end, a reference interferometer provides convenient position markers to trigger the sampling. The
mirror velocity does not affect the measurement directly. However, the temporal frequency of the signals
is proportional to the mirror velocity. Since the overall transfer function of the detector and electronics
is, in general, not constant with frequency, a change of velocity will affect the measured amplitude and
phase of any given spectral component.

We refer to the modulation in the magnitude of the spectral signals as mirror velocity error. It is
characterized by a Noise-to-Signal Ratio (NSR) given by

VCVEL 1 dM
NSRv'VEL - j M(f) df (87)

where

aVEL = the rms variation in the OPD velocity, and

M(f) = the magnitude of the overall transfer function at frequency f.

4.4.9 Sampling Errors

It is to be expected that the signals which trigger the sampling will contain some position error,
whatever their source. An error in the position of the sample produces an error in the measured amplitude
of the interferogram, which, for any given wavenumber, varies as the cosine of the OPD. The case of
random (uncorrelated) sampling errors has been analyzed by Bell and Sanderson [10]. Expressed as a
noise-equivalent radiance, the effect is

NENSAMP = 2lr5[vB(V)]RMS , (88)

where

([vB(v)]RMS) 2  N-Av2J,[ ] , (89)

(vl, v2) = the range of detectable wavenumbers, and

= the rms position error in the sampling.
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The position error, 3, here includes error contributions from noise in the reference interferometer,
and from electrical phase shifts induced by mirror velocity variations. The reference interferometer pulses
will have an equivalent position error given by

Gx,REF k 2. SREF ' (90)

where

'2 ,REF = the reference wavelength, and

SNRREF = the signal-to-noise ratio from the reference detector and amplifier.

Variations in the OPD velocity will shift the electrical frequency of the interferometer signals, as
described earlier. This affects the phase, 4, of the electrical transfer function, as well as the magnitude.
The group delay of the signal is

1 do
27r df (91)

Both the signal being measured and the reference signal have group delays, and it is the difference of
these delays, times the random OPD velocity variation, which produces a random position error. When
combined with the reference position error, we have, for the total sampling position error,

3 = j(CVEL ('IR - REF))2 + U2REF (92)

In the foregoing, the velocity variations were assumed to be random, i.e., uncorrelated from sample
to sample. In practice, the velocity will probably vary slowly, on the time scale of the sampling. A narrow
spectrum of velocity variations will result in relatively smaller sampling errors [11]. Thus, the expression
given here for NENAMP (equation (87)) may be regarded as an upper limit.

4.4.10 Optical Jitter-Induced Noise

In Section 4.1, it was shown that the amplitude of the interferogram is reduced by any misalignment
of the interferometer. The modulation factor is

M(E 2 J1 (k) =- I - 2(7rveR)2  (93)

k

where as before

e = tilt error of interferometer mirror, and

R = radius of Lyot stop.

The tilt error, e, will be composed of both a systematic, or repeatable tilt, e0, and a random tilt, a,
also called optical jitter:
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e = E0 +a .(94)

To find the modulation caused by the jitter alone, we perform a Taylor series expansion about the
repeatable tilt position, 0:

AM = -2(IrvR) 2 [2EOa + a2] (95)

The variance of M is given by

C2= ((A/)2)- (AM) 2  (96)

In terms of the variance and mean of the tilt components, this is

am =4(irvR)4[4Ke2)a +2a] , (97)

where

(a)O = 0 a(a 2 )

The modulation caused by the jitter results in a multiplicative noise in the spectrum, given by
_"M 2(7rvR)!02.,/(Ea}2

NSRj 1TT 2 ra -F2 0 2K g) (98)

The square root of two reduction in the noise comes from the fact that only the real noise power, and
not the imaginary component, contributes to noise in the reconstructed spectrum, for the case of two-sided
interferograms.

4.4.11 Total Noise-Equivalent Spectral Radiance

To summarize the foregoing results, the total noise-equivalent spectral radiance is given by

NEN2 =XNEN2 + B 2NSRi j (99)

where the additive noise components are

NENV,det 4L AF from the detector, (71)
Ao42 roD 

T 

7

NENv,amp = A amp f from the amplifier, (74)

NENv,alias = M(fimage) NEN4,det + NENv,amp from aliasing, (77)
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I KTOX7SaVM(vVOpD)Bv)N
NE~vADC b -from quantization, and (86)

2Ev" eff 'rTX1sRiM(V~oPD) 6

NENSAMP 2r5[vB(v)RMS from sampling errors. (88)

The multiplicative noise components are

NENvVEL = VCWEL 1 M from velocity variations, (7-.Ii M(f) df f=VVOPD (7

and from optical jitter within the interferometer,

NSRj, 1  = M- =(7R2  Ya V2() + Ca (98)

Refer to the preceding subsections for a full description of the variables occurring in these expressions.
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5. COMPARISON TO FILTER WHEEL RADIOMETER

It may be instructive to compare the noise-equivalent spectral radiance of the FTS to that of a filter

wheel radiometer having the same overall system parameters [12]. For a filter wheel radiometer, the

signal is

S, = Ao2.x8v9JvB v , (100)

while the noise, assumed to come from the detector, is

R v A-d Aff

a, = NEPdetg zv  D (101)D*

The noise-equivalent spectral radiance is thus

NENv, FWR = AdAf (102)

The measurement bandwidth, Af, is inversely proportional to the integration time for each measure-

ment

1
Af = 2- (103)2ti

Assuming equal dwell times on each wavenumber, the integration time is given by

t < v T, (104)
V2 - V1

where an inequality is shown, because some of the total measurement time, T, should be spent in

sampling the background level. (All variables used here have the same definitions as for the interferom-

eter.)

The noise-equivalent spectral radiance for the filter wheel radiometer reduces to

NEN >,FWR 1 Ad(v 2 -V1 ) (105)
AoS2TrxovD* 2&vT

For the Fourier Transform Spectrometer, we also assume that detector noise is the dominant term,

as is generally the case. It is given by

4L AdAf 2
NENv,det,FTS = Aot2T xllsD* N (106)
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For the FTS, the noise bandwidth is equal to the Nyquist frequency:

N
Af = - (107)

2T

hence
NEN2 Ad

v,FTS =T (108) = (72)

When we take the ratio of the noise levels for the two instruments, we find

NENv,FTS < 2 D*FWR 1 2v

NENv,FWR ?7sD*FTS (v 2 -v 1 ) (109)

Here we have retained the D* factors for the two separate instruments. If the D*'s in both cases
are dominated by thermal (i.e., internal) noise sources, they would be equal and would cancel each other
in equation (109). In that case we have, assuming that the beamsplitter efficiency is roughly 100%,

NENv,FTS < 8
NENv'FWR Det.Limit N ' (110)

where N, is the number of spectral samples, assumed to be the same for both instruments. This expression
shows the multiplex advantage ascribed to Fourier transform spectrometers.

At the other extreme, the detector D*'s could be dominated by signal photon noise in both cases.
Then we have

1 1
D*FTS C and D*FWROc(llla,b)

(-viiv A vBv IIlb

where B, is the average spectral radiance over the spectral passband, (v, v2). The ratio of the system
noises becomes

NENv,FTS < 8B

NENv,FWR Photon.Limit - v (

In this case, the Fourier transform spectrometer has a multiplex disadvantage, because each spectral
sample is affected by photon noise from the entire passband. In addition, there is the loss of 50% of the
incident energy out the input port of the interferometer. Equation (112) still shows the FTS to be superior
for measuring a few strong emission lines. Conversely, the FTS would be particularly poor at delineating
narrow absorption features in a spectrum.
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APPENDIX A

APODIZATION WITH A DETECTOR FIELD-OF-VIEW NOT ON
THE OPTICAL AXIS

The topic of self-apodization in an interferometer by an extended field-of-view was introduced in
Section 2. The geometry of the field angles is shown in Figure 3, which is repeated here for convenience.
The simple case, in which the circular field-of-view is centered on the optical axis (i.e., a 0 = 0), is treated
in Section 2. Here we treat the more general case of ao0  0.

OPTICA
AXIS RADIUS P0__.

Figure 3. Geometry of detector acceptance field-of-view in the system focal plane. Each vector represents an angle
in interferometer space.

The starting points of the analysis are the following equations:

s(x)= 2f Sv[i +G(ao,Po)]dv (14b)

for the detected signal, where

G(aopo) = 1 f JP0 cos(2rvx cos a) sin pdpdfl (16)

and the solid angle of acceptance (included in the definition of Sv) is given by

S2 f= f r Jfo sin pdpdp(= 2z(1-cosPo)= p2 . (17)
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The spherical law of cosines gives

cosa~cosaocosp+sinaosinpcos3 (A-I)

When this is applied to the G integral, we obtain

G(aO, p3 ) I 7rJ'A cos[Ccos p+ Ssinp cos#]sin pdpd3 (A-2)

where we have defined

C-=27cvxcosao and S=21rvxsinaO (A-3a, b)

Expanding the argument of the cosine in brackets [..,G may be written

G(aOpO)=-(Q1 - Q2) (A-4)

QJ=7 f PO cos[Ccos p] cos[Ssin p cos /P] sin pdpdf3 A-a

Q= X~ Jfp0sin[Ccos p] sin[S sin pcos /] sin pdpd3 (A-5b)

We observe that in equation (A-5b), the integrand is antisymmetric in A3 So Q2 0. The integration
over P3 for Q, yields

,= 2zr" POcos[C cosp]&0 (S sin p) sin pdp , (A-6)

where use has been made of [7]

focos(xcosO~7JO~x)

In order to evaluate the integral in equation (A-6), we substitute

sin p Cosp 2 . 2
si O dr=snp dp, cosp= 1- sn

which leads to

Q,=2;r sin P o, Cos[ Cl l r2 sin2 pol O (Sr sinpo1) r2.2 POdr (A-7)

We introduce the approximations
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-r si Po = 1--r 2 sin2 PO (A-8a)2

and

1 =1 1 r2 sin2 PO

1-r 2 sin 2 PO n (A-8b)

and neglect sin 2 p0 relative to 1 in the overall factor (A-8b). We also make use of

£2 = 2r(1 - cos po) = 47r sin 2 PO (A-9a)
2'

and

7rsin 2 po =47rsin2PO cos2PO S2(1-sin2P f22 .(A-9b)

2 2 ~ 2)=

When the cosine factor in (A-7) is expanded, and the relationships (A-8) and (A-9) are applied, we find

Q1 = £2[A(C, S) cos C + B(C, S) sin C] (A-10)

or, using (A-4) and remembering that Q2 = 0,

G(ao,po)=[A(C,S)cosC+B(C,S)sinC] , (A-11)

where

A(C,S) = 2J Jo(Srsinpo)Cos(iCr2 sin 2 Po rdr , and (A-12a)

1 . . 1 2 .2

B(C,S) = 2f Jo(Srsinpo)sin(-Cr sin Po rdr (A-12b)

Evaluation of the two r integrals in equations (A- 12) yields a solution in terms of Lommel functions
(see [13], Sec. 8.8.1, pp. 435-439). The Lommel functions are defined as

n+2s

Un(u, w)= Z (- 1)s Jn+2s(W) and (A-13a)

n+2s

Vn(u,w)= Z (-1)s n21 Jn+2s(w) (A-13b)

The integrals for A and B are found to be
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1 .1I

cos-u sin-u
A(C, S)= 1 2 U, (u, w)± + 2 U2 (u, w) ,and (A-14a)

2 U -U
2 2

.1 1
sin-u cos-u

B(C, S)= 2 U1 (u, w)- 2 U2 (U, w)(A1

2 2

where u and w are defined as

u =-Csin 2Po ,w=-Ssinpo A1ab

We also use

u C cos aosin p.po
=-sin po= =- *(A-i16)

W S sin ao ao

Equations (A-14) can also be written as

A(C, S) = M(C, S)LCosIu cos Yf + 2 i V]M(G' S)Cos 1UI) (A-1I7a)

and

B(C, S) = M(C, S)sn Iu cos V,--Cos iu sin Vfl=M(CS)sinyI -- / (A-17b)

where we define

M(C S) Cos V/ =-2U(u, w) , M(CS)sinyf= =-U 2 (u, w) ,(A-18a,b)

U U

and

tan VI = U2 (u, w) (A- 19)

We observe that

M(C, S) = - (LI (u, w))2 + (U12 (u, w))2 (A-20)

Equation (A-il1) now becomes, for the monochromatic signal factor in equation (14),

G(aO, po) = M(C' S)[Cos iu U-V cos C+sin 1 U- vsin C] or (A-21)
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G(ao,po) = M(C,S)cos( C-lu +Yf (A-22)

The factor M(CS) given in equation (A-22) is now seen to be a modulation factor, which changes the
apparent amplitude of the interferogram. The phase of the interferogram is also modified by the quantity
u/2 - yf.

While equation (A-22) represents an analytical solution to the problem of an off-axis field-of-view,
the behavior of the unusual functions it contains is far from obvious. We need to examine its various
components, using reasonable value ranges for the constant parameters. First, we observe from equation
(A-16) that u/w = p0(x 0 , which, for GHIS, is much less than one. (Therefore, the U solution was chosen
over the Vn.) As for w, the argument of the Bessel functions in (A-13), we have

w=-Ssinp 0 =2rvxsina 0 sinp 0

and both po and a0 are usually small. (GHIS: p0 = 4.48 mrad, 0,MAX = 25.9 mrad.) On the other hand,
vx is the optical delay expressed in wavelengths, and is related to the relative wavenumber resolution
(often simply called "resolution" by spectroscopists) as

IvxI! vL=(j

For GHIS again, vx is less than 1,000, but other applications could require higher resolution. The maxi-
mum value of w for GHIS is 0.671 (v = 1150 cm -1, x = 0.8 cm).

With this regime of values in mind, let us examine the Lommel functions. From (A-13a), we have

Ul (u,w)= -)Jl(W)-(-)'J 3 (W)+(+-)4J5 (W) -... ] (A-23)

or

(uw ) rw (w)[1 - )I j3(w) + 4 j5 (W)

U1 (u, W) 1 w 1 w )J()* (A-24)

Making use of the identity

2nJn(w) = wJnl(w) + wJn+1(w) , (A-25)

we find (after considerable algebraic manipulation)

='U2.-w( + 2w J 3 (-- [1-3uw2 W) J(W) (A-26)

In this regime, the Bessel functions are well approximated by the first terms in their power series
expansions:

35



JH = (A-27)Jw) "2 k= k! (n+k)! -2 n !. 2 )(-7

Thus, we have

M J(W) 5!KZ) , etc.

U1 and U2 can now be written

6U2 (u20) = (A-28)

and

6[k.2-- 2-2 -~'22 -2 -k)+' (A-29)

When the foregoing expressions are inserted in equation (A-20), and the terms higher than second
order are dropped, we find

or more simply,

2 2

M(C,S)=-J(w) 1-- (A-31)

Applying the power series for the Bessel function (to second order), this becomes

M(c,s)= I- 1- -a 9 (A-32)
8 96 8 96

We also need the phase angle, i, from the definition (A-19). Inserting the approximate expressions
(A-28) and (A-29), and applying a binomial expansion for the denominator, we find

u +W _ 1 jl [ 1 2 4= 4[8+1w+u2]tan 411+ 6 2 [ + 6 ( 2 ] 2 8 (A-33)

Equation (A-22), which describes the fringe amplitude, finally becomes (with tanyf yf), after inserting
the definitions of u, w, C, and S,
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G(ao, Po) M(ao, Po) cos[21rvx cosao sin2 (A-34)

where

M(ao,po) 1 (2rvx)2 sin2 Po sin2 ao + s PO (A-35a)18 12 ) 13a

or, using (A-9b) and coso 0c 1,

8zao po i o+ (A-35b)

We observe from equation (A-34) that the effective wavenumber in the interferogram has become (using
(A-9b))

v'= vcosao(1-- )  (A-36)

The foregoing approximate expressions were derived in order to elucidate the basic behavior of the
modulation, M, and the phase factor in the interferogram (see equations (14b) and (A-22)). In practice,
it is not difficult to evaluate the actual functions, with, for example, a good spreadsheet program. This
has been done in WingZ on the Macintosh, for the particular angles of the aperture radius and offset of
the GHIS spectrometer (a0 = 25.9 mrad, p0 = 4.48 mrad, in interferometer space). The behavior of the
modulation factor M(a0, p0) is plotted in Figure A-1. For the same system, the residual phase error in
radians, after using the effective wavenumber given in (A-36), is shown in Figure A-2.
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Figure A-I. The modulation factor for the GHIS spectrometer, caused by the offset and radius of the detector
aperture (field stop).
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Figure A-2. The residual phase error, in radians, for the GHIS spectrometer, caused by the offset and radius of
the detector aperture (field stop).
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APPENDIX B

PERMISSIBLE SURFACE ERRORS OF COMPONENTS

It has been shown that the effect of wavefront errors in the Michelson interferometer is to reduce
the fringe contrast from its ideal value of one by

-A 5 = 2r2 v2K82) , (50)

where

( = the mean-squared value of the wavefront error, or OPD, between interferometer arms, not
including the overall optical delay.

Equation (50) can be used as a tool to specify allowable limits on deviation from flatness of the
components, individually or as a group. Thus, we need to determine the wavefront errors caused by
deviations of each of the surfaces in the interferometer. Figure B-1 shows the optical setup, with labels
for each of the surfaces.

COMPENSATOR BEAMSPLITTER

FIXED MIRROR MOVING MIRROR
(Cm, ens a 1 2 3 4

SURFACES

(Compensator arm) (Splitter arm)

Figure B-1. Typical layout of an unbalanced Michelson interferometer. Wavefront distortions caused by the
beamsplitting surface are schematically shown.
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Some simple diagrams are helpful for understanding the OPD effect of each surface. Figure B-2
shows rays incident on a refractive element, whose surface is displaced by a distance S in the outward
normal direction. Both the refracted and reflected rays are shown. By constructing perpendiculars to the
rays at the points of incidence (i.e., parallel to the wavefronts), we can easily deduce the increase in
optical path (OPD) caused by displacement S. The formulas for the reflected and refracted rays are shown
in the figure. The OPD in the reflected rays is equally applicable to the Michelson mirrors, but in that
case we have cos0 = 1. For refracted rays, the OPD is the same for each direction, and for each face.

Figure B-3 shows the case of rays internally reflected from the displaced surface. Otherwise, it is
the same as Figure B-2. Notice that the index of refraction changes the OPD effect.

OPD=-2Scos 0

OPD =S (n cos 0'- cos 0)

Figure B-2. Geometry of rays refracted and externally reflected from a surface with a positive deviation S.

Construction lines are drawn parallel to wavefronts.
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nI

YI

I

OPD S (n cos 0'-cos 0)

OPD = 2 S n cos 0'

Figure B-3. Geometry of rays refracted and internally reflected from a surface.

For the interferometer shown in Figure B-i, the wavefront OPD between the two arms of the
interferometer (except for the overall x) is given by

t5(r,qO)=2[S3 (ncosO' +cosO)+SMs-SMc+(S -Sf-S$)(ncosO'-cosO)] , (B-i)

where

0 = the angle of incidence at the beamsplitter,

0' = the angle of refraction within the beamsplitter and compensator,

n = the index of refraction of the beamsplitter and compensator,

ncos0' = n2 _ sin 2 0  , from Snell's Law,

Si = surface deviation of surface i, measured at the ray position (r, 0) within the Lyot stop. Primes
indicate the non-common ray path intersections.

SMS = surface deviations of the mirror on the beamsplitter side at (r, 0), and

SMC = surface deviations of the mirror on the compensator side at (r, 0).

In equation (B-1), the position coordinates, (r, 0), all refer to a projected position within the
aperture. We notice that, for small angles of incidence, the OPD is twice as sensitive to beamsplitter
errors as to mirror errors. This comes about because a positive surface deviation causes a positive
wavefront change in one leg, and a comparable negative change in the other. The optical path difference
is roughly twice as large as either. Also, it is the difference between the errors on the two mirrors which
matters.
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Often it is easier to measure (and specify) wavefront irregularity in transmission, rather than
measure surface irregularity. The transmitted wavefront errors of the compensator and beamsplitter,
respectively, are given by

6CT(r,0)=(Sl +S)(ncosO' -cosO) , and (B-2)

SST(r,0)=(Sj + S )(ncos0'-cos0) (B-3)

Using these transmitted wavefront errors, equation (B-I) becomes

c(r,q)=2[SMs -SMC + ST -5CT+2S3cosO] . (B-4)

Equation (50) can be used to predict the loss of fringe contrast, if we know the exact surface
irregularities of the components (using equation B-1), and/or the transmitted wavefront errors (using
equation B-4). However, to specify the figure requirements, we must make some simplifying assump-
tions, as follows. Assume that the figure errors are random and uncorrelated. Their mean-squared values
should then be additive. Also, we shall express the errors as peak-to-valley (P-V) measurements, given
in waves, at some stated test wavelength, ?testr We assume the P-V values to be related to the rms values
as

,5'2" W(4 V )F = Atest----- , and WjT = 'test (B-5a, b)

for the flatness of surface i, or the transmitted wavefront error of componentj, respectively. Then we find,
using equation (B-4),

jst 2 2 FkS + F2c + 4F2 cos2 0± W+ T + W2T (B-6)

where

A = the (minimum) operating wavelength of the interferometer (= l/v).

Assuming that both mirrors and both transmissive elements are made to the same specifications,
equation (B-6) can be simplified to

-AMp <, 7r ( A tF2 +2F 2 cos 2 0+W . (B-7)

All of the specifications in equation (B-7) must include mounting distortion and thermal effects, as well
as the original fabrication errors of the components.

For the case of the GHIS interferometer, 0 = 300, A > 3.7 pm, and Atest = 0.633 pm. The beamsplitter
and compensator are KBr, with n(3.7 pm) = 1.536. To estimate the wavefront error effects, let us assume
that the mirrors are made to 1/4 wave from fabrication, with a further 1/8 wave mounting/thermal
distortion. Thus, FM = 3/8. For the transmitted wavefronts, assume 1/4 wave from fabrication, and 1/20
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wave mounting/thermal distortion. (It is not easy to alter the transmitted wavefront by bending a win-
dow.) Thus, WT = 3/10. The flatness of the splitter surface is most critical, and we assume 1/8 wave from
fabrication plus 1/8 wave distortion, to get F3 = 1/4. Inserting these assumptions into (B-7), we find
-AM6 < 9.4%.
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APPENDIX C

MICHELSON INTERFEROMETER WITH RETROREFLECTOR MIRRORS

The plane-mirror Michelson interferometer employed for FT interferometry is sensitive to the
angular alignment of its mirrors. A monochromatic interferogram takes the form

HE(v,x): 2 J(k)cos(2irvx) (36)
k

where

k =4rvER , (37)

= the tilt misalignment of the mirrors,

R = the radius of the Lyot stop,

v = the wavenumber, and

x = the optical delay.

Tilt misalignment can be avoided by the use of precise retroreflecting optics, such as corner-cube
mirrors, or cat's-eye reflectors. A Michelson interferometer with corner-cube retroreflectors is shown
schematically in Figure C-1. In principle, retroreflectors return the wavefront exactly parallel to its
original plane. However, the returned wavefront is generally inverted in its plane, about the center of the
retroreflector. It is shown in this Appendix that this results in a sensitivity of the interferometer to
translational alignment of the retroreflectors.

45



REFERENCE MIRROR

BEAMSPUTTER

INPUT BEAM

LYOT MOVING MIRROR
OP""

FOCUSING
OPTICS

DETE CTOR

Figure C-I. Michelson interferometer with corner-cube retroreflectors (schematic).

Figure C-2. Close-up of a corner-cube retro reflector which has been displaced from its on-axis position (shown
in grey) by distance s. For rays incident at angle Ofrom the optical axis, the apparent linear shift of the vertex is
shown as 3.
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C.1 ANALYSIS OF RETROREFLECTOR DISPLACEMENT

Consider now the effects of translational misalignment of the retroreflectors. (We shall assume that
the reflectors are optically perfect, i.e., they introduce no wavefront distortions by themselves.) Figure
C-2 is a close-up diagram showing one of the retroreflectors displaced a distance s from the optical axis,
which is defined by the vertex of the fixed reflector and the center of the Lyot stop. The displacement
leaves the incoming and outgoing wavefronts parallel. Also, it has no effect on a beam parallel to the axis.
However, for rays incident at an angle 0 to the axis, as shown in the figure, there is a change 28 in the
optical path, relative to the undisplaced reflector. The optical delay in the interferometer becomes

x'=xcos0+28=xcosO+2ssinO (C-i)

or, generalizing to three dimensions,

x' =xcosp+2ssinpcoso , (C-2)

where

(p, ) = polar and azimuthal angles of rays in the field of view (FOV), and

= 0 in the displacement direction of retroreflector.

Assume that an extended source of radiation fills the FOV. We need to do an integration over that
FOV to obtain the whole signal. The detected signal in the interferometer is

s(x) = 2 S,[l + Hs(v,x)]dv , (C-3)

where

H, (v, x) = 1 o cos[21rv(x cos p + 2ssin p cos )]sin pdpdo, (C-4)92 f- r f0

Po = the angular radius of the field of view, and

£2 = 27r(1 - cos po) = 47rsin 2 P0 = the solid angle of the FOV.
2

Expanding* the outer cosine in (C-4), we have

H,(,X [P-P2] (C-5)

where

P1 = fJ P0 cos(Ccos p) cos(S sin p cos o)sin pdpdo , (C-6)

P2 = J 0 psin(Ccosp)sin(Ssinpcoso)sinpdpdo , (C-7)

*Readers of Appendix A will recognize that the integral in equation (C-4) is identical in form to that

in equation (A-2), and anticipate that the solution will be in terms of Lommel functions.
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and the expressions have been simplified by defining C -=27vx and S =-4rvs. We observe that since the
integrand in equation (C-7) is antisymmetric in 0, we have P2 =0. When we make use of

Jocos(xcosO)dO = ,r1(x)

the 0 integration in P1 yields

P, = 27rJPO cos(Ccosp)JO(Ssinp)sin pdp (C-8)

Proceeding as in Appendix A, make the substitution

sinp=-rsinpo , cosp=C1-r in 2Po 1i--r 2sin 2 PO

and the approximation

sinpdp= rdr sin 2 PO = rdr sin 2 PO
- ;sin2 Po

Thus equation (C-8) becomes

P 2gcsin2 Pof "cos C[I-Ir2 sin2 P}J~o(Srsinpo)rdr (C-9)

Defining the symbols

u =-Csin 2po and w=-Ssinpo

and expanding the cosine, we have

P= r sin 2 PO[A(u,w)cosC+B(u,w)sinC] ,(C-10)

where

A(u, w) 2J1 cos( 1i ur 2 IJ0 (wr)r dr ,and (C- IlIa)

B(u, w) 2Jsi(I ur2 J~O(wr)rdr (C-i 11b)

Since we have

equations (C-10) and (C-5) combine (since P2 = 0) to give
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Hs (v,x)=A(u,w)cosC+B(u,w)sinC (C-13)

Once again, the two r integrals in equations (C-11) yield a solution in terms of Lommel functions
[13] (Section 8.8.1., pp. 435-439). The Lommel functions are defined as

Un (u, w)= . (1)s Jn+(w) , and (C-14a)
s=O

( \n+2s
Vn (u,'W)= (-l)S -W Jn+2s(W) (C-14b)

s=0

So far, the solution has paralleled that in Appendix A; but here we are interested in the case where
the retroreflector displacement, s, is small, but the OPD may be large, such that w/u < 1. Thus we need
a solution in terms of the Vn series. From Born and Wolf [13], we find

. 1 1
2 sin-u cos-u

A(u, w)= -sin w + 2 V0(uw) 2 V(u,w) , andu 2u +  I- -  1 ' (C-15a)
-u -/
2 2

1 .1
2  cos-u sm-u

B(u, w)= - cos - 1 Vo(u,w)- 2 (uw)
u 2u 1 2 (C-15b)

2 2

Inserting these solutions in (C-13) and collecting trigonometric factors, we find

Hs(v,x)= 2{sin/C+ 2 -sin(C-2)V(u,w) - cos(C-2)V(u, w)] (C-16)u , 2u 2, (216

Though it is a solution in closed form, the result in (C-16) needs further reduction before it can
easily be compared with the more usual expressions. We may define intermediate symbols

2

Y- C-- ,and Z -u
2 2 2u

and (C- 16) becomes

Hs(v,x) = 2[sin(Y +Z)-sin YV0(u,w)-cos YV 1(u,w)] (C-17)
U

Next we have

Hs (v, x) = 2 {sin Y[cos Z- V(u, w)] + cos Y[sin Z- V1 (u, w)]} (C-18)
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which can be written

Hs (v,x) =M(u, w)[sin Ysinl f + cos Ycos ] =M(u, w)cos(Y- I) , (C-19)

where we define (omitting the explicit Lommel function arguments for brevity),

M(u,w)- l+V 2 + VI2 -2VcosZ-2VsinZ , and (C-20a)
U

Cos Z - Votan siZ-V (C-20b)
sin Z- V1

The foregoing solution is equivalent to that given by Murty [14] for the same case of w < u.

At this point, we return to the definitions of u, w, Y, Z, etc.:

u = Csin2 PO = 27cvxsin 2 PO (C-21 a)

w- Ssin 2 po=4zvssinp0  , (C-21b)

Y= 27cvx 1-2sin2 PO,2vx(1- and (C-21c)

1 2 (()) (s)2)

Z=2-vx -sin po + 2s) = 27ZvxL" +2(s)2, (C-21d)

In these expressions, we have made use of

sin2 PO 9-- *

Equation (C-19) is seen to be

H,(v, x) =M(u, w)cos 2;rvx(1 - - (C-22)

We recognize that (C-22) is very similar in form to equation (24) in Section 3.2, namely a fringe cosine,
modulated by a slowly-varying factor, M. The argument of the cosine is modified with the same factor
as in (24), but an additional phase shift (0 appears.

The modulation factor M and phase shift if have been evaluated for the case of p0 = 10, and
vx = 1,000 waves. The results are plotted as a function of vs (the displacement in waves) in Figures
C-3 and C-4.
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Figure C-3. Modulation factor M(u, w), vs. retroreflector displacement, vs (in waves), for the case of FOV radius
po = 1 , and the interferometer OPD vx = 1,000 waves (u = 1.91).
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Figure C-4. Phase shift Vp(u, w) vs. retroreflector displacement, vs (in waves), for the same case as in Figure
C-3.
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As a check on the foregoing result, we observe that for s = 0, then w = 0, V0(u,0) = 1, and
Vl(u,0) = 0. Equation (C-16) becomes

H(vx) =2[sin(Y + Z)-sinY]= 4cos Y +! Zsin(IZ , or (C-23)

H4(v'x) U = sinc--) cos C-4 ) .(C-24)

Inserting the definitions above,

Hs (v, x) = sinc vx 2 cos 27rvx[1 - ] , (C-25)

which is identical to equation (24), and represents the apodization caused by the extended field of view.

C.2 APPROXIMATE EXPRESSIONS FOR THE FRINGE MODULATION

To clarify the behavior of the amplitude modulation and phase factors, we may express them as
power series expansions, valid for small s. We use the series for the Bessel functions

J (w ) n (_ ,)I ( w ) 21 ( w ~ n

S2) k=0 !( + k)!,) 2 n! 27

Thus to first order in (w/2) 2,

V0 (u, w) = I - , and V (u, w) = 2(w)2 (C-26a,b)2 ~ u2

Inserting these approximations in (C-20a), we find

M(u, w) = u 2[1 - cos Z][ 2  u 2 sinZ (C-27)

Applying the identities

sin2Z 1-cosZ and Z sinZ (C-28)
2 2 2 1-cosZ

we find

M(u,W)4sinZ1-2 l+- - 4sinZ2 +-2cot- (C-29)u 2 2 u 2] u 2[ 2 ,2 t, u 2
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From the definition of Z,

.Z U w 2  u .w 2

sin- = sin- cos - + cos-sin- (C-30)
2 4 4u 4 4u

or, since w is small (though u may be appreciable),

[1 2 osin- =sin-+ -cos -= sin- 1+ cot (C-31)

2 4 4u 4 4[ u 24

Making the substitution in (C-29), we get

u 4 l I(WF2cotU][ll(w)2(1 2 7\1
M('W i 4[+u2 4 22 + -Cot 2(C-32)

or

M~~)44 l 1_lI( w 2 +1 w)2 coU Z)]

M u7W = si 4 2 2) u ,2- Cot 4-- Cot 2(C-33)

From the identity

cot A - cot B = sin(B - A)

sin Asin B

we find that

sin 2 (w)
2

cot - - cot - -
4 2 uin U + 2  sin 2 U (C-34)

4 s 4 4u 4

Hence, the third term in (C-33) is second order in (w/2)2, and we obtain

M u W= 4 si u (C-35)

For the phase shift, Vf, we have from equation (C-20b), to first order in (w/2)2,

ta f=cosZ 1+ (W2)-
tan -i 2 (w)2 (C-36)

u. 2
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which may be expressed as

tan o -1 1+ - 2- (C-37)tn sin------ cos Z- 1 u2 siZ

or

tan i -[l+ y- - - tanZ (C-38),2) kcosZ- u sinZJ 2 (-8

or also

+2 1 (W)2]taZ+ 1 (w) 2

tan Vf 1-I us--an-- -k (C-39)

Let us assume that

7
IN tan -tan-

tan tf tan - =2-2)1 + tan X tan Z (C-40)

2

To find X, we compare (C-39) and (C-40) to find that

tanx 2( 2 2 sinZ 2 (C-41)
sinZ+- uk2

Hence, to first order we have

I-(w 2  

(C-42)Z=sinZ 2) '

and

f = 2iZ .2) + iZ 2 (C-43)

Gathering together equations (C-19), (C-35), and (C-43), we have the approximate expression for
Hs, for small values of s:
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U 4[1 84 si

We observe that equation (C-44) is of almost exactly the same form as (C-24) or (24) of Section 3.2, with

the addition of an amplitude modulation factor and an additional phase shift. The factor

2
1 = 1-2 2 (vs)2 sin 2 P I =1- 2r(vs)2 Q (C-45)
8

represents the loss of fringe contrast caused by the retroreflector displacement alone.

C.3 RETROREFLECTORS VS PLANE MIRRORS

An obvious question arises as to whether better interferometer performance can be obtained with

plane mirrors or with retroreflectors, given the level of alignment precision that is attainable. For the

plane-mirror interferometer, the expression for loss of fringe contrast corresponding to (C-45) is

-JI~k =l-- - -(38)k~ l k =  2 2Z 12 ,2J

where R is the radius of the Lyot stop, and E is the mirror tilt error. If we define the respective losses

of fringe contrast as

Aretro = 21r 2 (vs) 2 sin 2 p0, and Aplane = 2(rvdR)2

and take their ratio, we find

Aretro ssinpo 2 (C-46)

Aplane

For any interferometer with given R and p0 , equation (C-46) expresses the relative sensitivity to loss of

fringe contrast caused by displacement error for retroreflectors vs tilt error for flat mirrors.

To put the loss ratio in perspective, let us assume that parts can be positioned with a linear precision

of s, and with an angular precision of sID, where D is a characteristic size. Let us take D to be the

diameter of the Lyot stop. In this case, the plane mirrors contrast loss is

Aplane = 1 (In's)2  (C-47)

and the ratio of losses becomes

Aretr 4 sin 2 PO (C-48)
Aplane
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We can conclude that Aretro < Aplane as long as p0 < 30'. In words, the retroreflector misalignment will
cause less loss of fringe contrast than plane-mirror misalignment under these assumptions, as long as the
field-of-view diameter is less than 600. Since this is almost certain to be true, we are led to believe that
it is easier to build a high-performance interferometer with retroreflectors, rather than plane mirrors.

The foregoing conclusion must be tempered with the fact that it is much more difficult to fabricate
an ideal retroreflector than an ideal plane mirror. A complete trade study must also take into account the
wavefront errors likely to be introduced by the different components. Furthermore, the ratio of the linear
and angular positioning errors may be quite different than assumed above, when the details of the
Michelson mirror scan motion are accounted for.

L
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